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The motion of an almost autonomous Hamiltonian system with two degrees of freedom, 2n-periodic in time, is considered. It 

is assumed that the origin is an equilibrium position of the system, the linearized unperturbed system is stable, and its characteristic 

exponents kioj 0’ = 1.2) are pure imaginary. In addition, it is assumed that the number 20~ is approximately an integer, that 

is, the system exhibits parametric resonance of the fundamental type. Using Poincart’s theory of periodic motion and KAM- 

theory, it is shown that 4x-periodic motions of the system exist in a fairly small neighbourhood of the origin, and their bifurcation 

and stability are investigated. As applications, periodic motions are constructed in cases of parametric resonance of the fundamental 

type in the following problems: the plane elliptical restricted three-body problem near triangular libration points, and the problem 

of the motion of a dynamically symmetrical artificial satellite near its cylindrical precession in an elliptical orbit of small eccentricity. 

0 2002 Elsevier Science Ltd. All rights reserved. 

1. FORMULATION OF THE PROBLEM. TRANSFORMATION 
OF THE HAMILTONIAN 

Consider the motion of an almost autonomous Hamiltonian system with two degrees of freedom. It 
will be assumed that the Hamiltonian of the system is expressed as a series in powers of a small parameter 
&(O < E-=3 1) 

H= H,(q;,pi)+EH,(qi,pi,r)+&*H2(q;,Pi,f)+... (1.1) 

where qi and pi (i = 1, 2) are the coordinates and momenta, respectively. The functions Hk(qi, pi, t) 
(k = 1, 2, . ..) in (1.1) are assumed to be 2n-periodic functions of time. 

Suppose the origin qi = pi = 0 of the phase space is an equilibrium position of the system. The 
Hamiltonian H is assumed to be analytic in the neighbourhood of the point qi = pi = 0; the functions 
Hk (k = 1,2, . ..) can be represented in the form 

H, = Hj2’ + Hj3’ + HC4) + k . . . (1.2) 

where Hf) is a form of degree 1 in qi, pi. 
Let us assume that the characteristic exponents kioj(j = 1,2) of the system of equations of motion, 

linearized in the neighbourhood of the origin, are pure imaginary where E = 0. If the numbers Wj do 
not satisfy any relations of the form klwl + k2w2 = 0 (where kl and k2 are integers such that 
1 < ) kl I+ ( k2 1 c 4), then, for suitably chosen variables q/y pi, the unperturbed Hamiltonian Ho may be - 
written in normal form up to and including fourth-order terms. In “polar” coordinates cpi, ri (qi = ,‘2r, - 
sin ~pi, pi = \ 2ri cos Cpi), we have 

where h1 = wl, but A2 = 02 or A2 = -c02 (depending on the specific problem concerned), cii are constants, 
and O5 is the set of terms of order at least five in $. 

Suppose parametric resonance of the fundamental type occurs in the system when 2wl is approximately 
an odd integer N. 
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The aim of this investigation is to determine whether periodic motions of the complete system with 
Hamiltonian (l.l), (1.2) exist in a fairly small neighbourhood of the origin, and to determine the number 
and stability of such motions. 

We shall assume that besides the resonance relation 20~ = N there are no other relations between 
the frequencies o1 and o2 of the form klol + k2m2 = L (where ki and L are integers, with 
2 s (kl(+ (kJ c 4). We set ri = ERi, Cpi = 8; (i = 1, 2) and, applying a nearly identical canonical 
transformation which is 2lt-periodic with respect to time, we reduce the Hamiltonian to the form 

H=&R, +&R,+&aR,cos(2B, -h’t+&,)+&(c~,,R;+c,,R,R2+c,,~R;)+O(&) (1.3) 

where x, = hi + O(E) = const (i = 1,2), and o and O0 are constants. The constant o in (1.3) is assumed 
to be pojtive; this may always be achieved by a displacement with respect to O1. 

Put 2h, = N + 2&P. Make the change of variables 8;, Ri + vi, pI defined by 

Ri=pi (i=1,2), 28,-/vt+8,=2~,, e,=v* 

thereby reducing the Hamiltonian of the problem to the form 

H = J$P, + h,p, + E(TP, cos2yr, + E(c#: + cl IPIP~ + c02P; )+ NE’) (1.4) 
Assuming that c20 t 0, we make one more change of variables, through the formulae 

We then have 

w2=vI23 PI =- 0 p, 
I c20 I 

p2 =--Q, (x=signc20) 
I c20 I 

co20 

a’ =Ic20). 
a2 = xc, a = a;‘, b=L!!_ 

c20 

The term O(E”) in (1.5) is 4n-periodic in t, 2n-periodic in w and Wr, and analytic in p’ z and ii?. 

Remark. The Hamiltonian (l.l), (1.2) can also be reduced to the form (1.5) when ol 2 N/2 and for even N, 
provided that its structure contains no third-degree forms Hi?). In that case the term O(E”) in (1.5) will be 2n- 
periodic in t. 

2. PERIODIC MOTIONS OF THE SYSTEM 

Equilibtium positions of the approximate system. If the term 0(&j’) is omitted from Hamiltonian (1.Q 
we obtain an approximate Hamiltonian. The coordinate ijz in the corresponding system is cyclic, and 
consequently Pr = c = const. We write the approximate Hamiltonian in the form 

fi = h,c + &(a,c’ + a2 H’) (2.1) 

Ht=-~p+pcos2~+p2, x = -(ap + bc) = const (2.2) 

The function H’ is a model Hamiltonian for systems with one degree of freedom at parametric 
resonance (see, e.g., [l]). H owever, while for the latter systems the parameter x is defined by the 
resonance detuning, in the case of the system considered here, which has two degrees of freedom, x 
will depend not only on the resonance detuning (characterized by the parameter p) but also on the 
constant c, which is associated with the presence of a second (cyclic) coordinate in the system. 

The model system has a particular solution p = 0 - the equilibrium position at the origin, it is stable 
if 1x1 > 1 and unstable if 1x1 < 1. If x < -1, there are no other equilibrium positions. If -1 < x <: 1, 
the model system has two stable equilibrium positions - the points (7t/2, (x + 1)/2) and (37c/2, (x + 
1)/Z). These points are also stable equilibrium positions for x > 1; in the latter case the system also 
has two unstable equilibrium positions - the points (n, (x - 1)/2) and (0, (x - 1)/2). 

Phase portraits of the model system are shown in Figs la, b, c in the plane of the variables 
x1 = ,2p cos v,xz = ,2p sin w, for the cases x < -1, -1 < x < 1, x > 1, respectively. Corresponding 
to the stable equilibrium positions of the model system in Fig. 1 there are singular points of the “centre” 
type; the unstable equilibria are represented by saddle points. 
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(a) (b) 
Fig. 1 

The equilibrium positions of the approximate system with two degrees of freedom are given by the 
equalities & = 0, p = 0, or 

p, = 0, P = p*, w = w* (2.3) 

where (w,, p,) is one of the equilibrium positions not coinciding with the origin. For these equilibrium 
points c = 0, and so the parameter x of the model system and hence also the equilibrium values 
p, = (x 2 1)/2, are defined only by the resonance detuning. 

Periodic motions of the complete system. Let us consider the equilibrium position (2.3) of the 
approximate system as a generating solution. Setting & = rt, w = w, + x1, p = p, + y in (1.5), we 
obtain the following expression for the complete Hamiltonian in the neighbourhood of the generating 
solution 

H = h,r2 +&a*(-2pI cos2yr,x~ +y:)+&.O, +O(&) 

A2 = h2 + &a,bp. 

(2.4) 

where O3 is the set of terms of degree at least three inxt,yr, rz I” with constant coefficients and the term 
O(E~‘~) is 4n-periodic in t. 

Since by assumption 20~ is not close to an integer, we have non-resonant case of Poincare’s theory 
of periodic motions [2], so that each equilibrium position (2.3) of the approximate system generates a 
single solution of the complete system, 4n-periodic in t and analytic in E”?. 

p = P(t) = p* + O(&), w = q(t) = w* + O(& ), I% = P2 (1) = O(c) (2.5) 

Depending on the value of the parameter x, the number of such periodic solutions may be either 
four (if x > l), two (if -1 < x c 1) or zero (if x c -1). 

Corresponding to the solutions (2.5) we have the following motions of the original system with 
Hamiltonian (1. l), which are 4n-periodic in t. 

+0(E) (2.6) 

+0(E) 

q2 = O(E), p2 = O(E) 
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Motions (2.6) corresponding to equilibrium positions of the model system whose w, values differ 
from one another by rt, are obtained from one another by a time shift of 27clN. Hence the original system 
has two different periodic motions of type (2.6) for x > 1, one motion for -1 < x < 1, and none for 
x < -1. 

The stability of the periodic motions. We will now consider the stability of the periodic solutions 
determined above. 

Motions corresponding to unstable equilibrium positions of the model system are unstable, as follows 
from the fact that the characteristic equation of the linearized approximate system has a positive real 
root. 

To solve the problem of the stability of periodic motions corresponding to stable equilibrium positions 
of the model system, we will consider the Hamiltonian of the perturbed motion, making the following 
substitutions in (1.5) 

We have 

H = Azr2 + ECL~[(X + 1)x: + yy ] +2&0c,x~y, + w2by,r2 - 

-f$:EOLZ(X+I)xf +ECqr. +&.05 +O(& K ) (2.7) 

where OS is the set of terms of at least the fifth degree in x1, yl, rp, the term O(E~“) is 4rr-periodic in t, 
and the constant A2 is defined by (2.4) with p, = (x + 1)/2. 

Making the change of variables 

x, =x(x+ I)_%, y, =Y(X+i)K r2 = r, 

we then apply a nearly identical canonical transformation 

which normalizes the Hamiltonian up to terms of fourth order inclusive. This transformation may be 
obtained, for example, by using the Deprit-Hori method [3]. We then change from the variablesx* and 
y* to “polar” coordinates w* and r*, in accordance with the formulae 

x* = *sin W*, y* = J?cosv’ 

as a result of which the transformed Hamiltonian becomes 

H = A2r; + 2&ci2mr* + &(C2,-,r** +C~,r*r;+C,,r;*)+E.0S+O(EY2) cw 
c =_~2(x+4) CllCJ "2(4w20 -$,I 

20 
2(x+1) ' 

c,, =- 

ic20 I&i' 
co2 = 

4do 

If the condition Cfi - 4C02C20 f 0 is satisfied, the periodic solution in question is stable for the majority 
of initial data [3,4]. This last relation reduces to an inequality 

2c:, + (X + 4)(4c,,c,, - c:, ) # 0 (2.9) 

Thus, if -1 < x < 1, the unique 4rc-periodic motion of the system with Hamiltonian (1.1) is stable 
for the majority of initial data, provided that condition (2.9) holds; of the two periodic motions for x 
> 1, one is unstable and one stable for the majority of initial data (provided condition (2.9) holds). 

3. PERIODIC MOTIONS NEAR TRIANGULAR LIBRATION POINTS OF 
THE PLANE ELLIPTICAL RESTRICTED THREE-BODY PROBLEM 

We shall construct periodic motions in the neighbourhood of triangular libration points of the plane, 
elliptical restricted three-body problem. The Hamiltonian is [3] 
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H=$P$+P;)+P<vPq5+ 2(1e+ceo~oys”)(~* +q2)- l+e~osv 
w_I-P CL _-++, ,=L.L 

r2 m, +m2 ’ 
q=&T7, J- r2 = (C+cl--1) +tl 

‘I 
(3.1) 

where 5, tl andpc,p,, are the Nechvil variables and the corresponding generalized momenta, e is the 
eccentricity, v is the true anomaly, ml and m2 are the masses of the main attracting bodies. 

The system with Hamiltonian (3.1) has a particular solution 

E =_, rlo=Jj p fi pII,== I-2u 
0 2 2’ C0=-7 2 

corresponding to a triangular libration point. At e = 0 a necessary condition 
stable is the inequality 

O<j.r<u* =(9-&@/18=0.0385208... 

(3.2) 

for solution (3.2) to be 

Let US consider the motions of the system in the neighbourhood of the point (3.2). In (3.1) we Put 

5=&J+q,. rl=tlo+q*> Pt=P{o+Pl’ Pq=Pq,+P* 

We then obtain [3] 

H=Hz+H3+H4+... (3.3) 

1 
H,=-(P:+P;)+P,w~IP~+ 

ecosV 

2 2(1 iecosv) 
cs: +d)+ 

I 
+ (q: - 8kq,q2 - 54; 1, k = 

3&( I- 2PL) 

8(l +ecosV) 
4 

where H3 and H4 are forms of third and fourth degree in qi and pi (i = 1,2), which will not be shown 
here. 

Using a univalent linear canonical transformation qi, pi + q,!, pi [3], we reduce the quadratic part H2 
of Hamiltonian (3.3) at e = 0 to normal form. The frequencies or and 02 (wr > 012 > 0) of small 
oscillations satisfy the equation 

cd-"*++I-p)=O 

When u = u. = (3 - 2,2)/6 = 0.0285954.. ., we have w2 = ‘/2, that is, parametric resonance of the 
main type occurs in the system. Assuming that 0 < e =@ 1, we find the 4z-periodic motions in the case 
when o2 = ‘/*. 

We put qi = iji /,‘Q, pi = , Oipi and then normalize the complete form H2 in the terms of the order 
of e, as well as the forms H3 and H4 at e = 0. After changing to “polar” coordinates we obtain the 
Hamiltonian 

H =G,R, -ih2Rz +eoR,cos(20, +v+8,)+e(c2,Rf +c,,R,R, +c,R,~)+O(~~) 

which, apart from the notation, is identical with Hamiltonian (1.3). 
Here, as calculations will show, 

4& 
8, = arctg- 

27 

When determining the numerical values of the coefficients cp we used their expressions as functions 
of the frequencies [5]. 
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Fig. 2 

Fig. 3 

Introducing the frequency detuning 15, = ‘12 + eox and relying on the results of Sections 1 and 2, 
we obtain the following 4x-periodic motions in the neighbourhood of a triangular libration point 

(3.4) 

3oJ33 

i----- 
a,= - 

341 lJ*? 
v$ 

===*-z- 2 

where (w,, p,) is an equilibrium position of the model system (see Section 1.2). 
Relations (3.4) ( omitting terms O(e)) are the equations of an ellipse. The major axis of the ellipse 

is inclined to the 11 = 0 axis at an angle c( = -0.5 arctg(2,6/3) = -29.26”... , and the quotient of the 
lengths of the axes of the ellipse is (41 + 7,33)/E = 3.186 . . 

Fixing the parameters u and e (u - u. - e), we derive from the relation u - u. = ,66ex/144 + O(e’) 
the corresponding value of the parameter x of the model system, and hence the number and form of 
the periodic solutions (3.4). 

Regions 0, 1 and 2 in the plane of the parameters (u, e) in the neighbourhood of the point u = uo, 
e = 0, as shown in Fig. 2, correspond to the cases x < -1, -1 < x < 1 and x > 1. The boundary curves 
between the regions are given by the equations p = c(() ? ,66e/144 + O(e’); on these curves the parameter 
x takes values + 1. In region 0 there are no 4rc-periodic motions of the system in the neighbourhood 
of a triangular libration point. In region 1 one 4n-periodic motion of the form (3.4) exists, which is stable 
for the majority of initial data. In region 2, two motions (3.4) exist, one of which is stable (for the majority 
of initial data) and one unstable. Condition (2.9) for stable motions is always satisfied in the region x 
> -1 in which these motions exist. 

Periodic motions of regions 1 and 2 are shown in Fig. 3(a, b). Motions in elliptic orbits occur in the 
sense opposite to that of the rotation of the body J about the body S. In the case when two periodic 
motions exist (Fig. 3b), the outer ellipse corresponds to the stable motion and the inner one to the 
unstable motion. 

4. PERIODIC MOTIONS OF A DYNAMICALLY SYMMETRIC 
ARTIFICIAL SATELLITE, CLOSE TO CYLINDRICAL PRECESSION 

We will now consider the motion of a dynamically symmetric artificial satellite -a rigid body in a central 
Newtonian gravitational field in an elliptic orbit of small eccentricity. Assuming that the dimensions of 
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the satellite are small compared with those of the orbit, we assume, as usual, that the motion of the 
satellite about its centre of mass is independent of the motion of the centre of mass itself. 

We introduce an orbital system of coordinates OXYZ (the OX axis points along the transversal to 
the orbit, the OY axis points along the binormal, and the 02 axis points along the radius vector of the 
centre of mass 0 of the satellite) and a system of coordinates Oxyz attached to the satellite, with the 
Oz axis pointing along the satellite’s axis of symmetry. The orientation of the attached system of 
coordinates relative to the orbital system is defined by the Euler angles w, 0 and cp. 

A motion of the satellite exists in which its axis of symmetry is perpendicular to the orbital plane 
throughout the motion, while the satellite itself rotates about the axis of symmetry at constant angular 
velocity (cylindrical precession). When that is the case, 80 = n/2, ~0 = n, and the momenta canonically 
conjugate to 8 and w, p. and p,,,, take zero values. 

Using the Hamiltonian as presented in [6] and putting 

e=n/2+q,, w=x:+q,. PFJ =pt. pw =pz 

we obtain the Hamiltonian of the perturbed motion of the satellite near its cylindrical precession: 

H = H2 + H., + ,.. (4.1) 

H, = P:+P; aP(l - e2$ 

2(1 +ecosv)2 -p2q’ + (1 +ecosv) 
2 91p2+p192 -$aW-e2)%f -&+ 

+ a2p2(1 - e2)3 2 

2(1 +ecosv) 
2 q, ++(a-l)(l+ecosv)qf 

H4 = +a2b2 --$ab+i(l -a) 

+0(e); a =: (OS as 2) 

where e is the eccentricity of the orbit of the satellite’s centre of mass, v is the true anomaly, A and C 
are the equatorial and axial moments of inertia, p = r&io, r0 being the projection of the absolute angular 
velocity of the satellite onto the axis of symmetry (r, = const) and w. corresponds to the mean motion 
of the centre of mass. 

The frequencies o1 and o2 (ol > o2 > 0) of the oscillations of the system with Hamiltonian H2 at 
e = 0 satisfy the equation 

m4-(a2P2-2ap+3a-l)w2+(ap-l)(ap+3a-4)=0 

The plane of the parameters (a, p) contains a denumerable set of curves on which parametric 
resonance of the main type occurs. We shall confine ourselves to considering three resonant cases. 

Let l3 = 0 (corresponding to translational motion of the satellite in absolute space). Then at a = a, 
= 181/156 = 1.1603 . . . we have o1 = 3/2, and at a = a2 = 23/20 = 1.15 we have o2 = l/z. If the 
parameters a and 0 satisfy the relation a@ = 2, then w1 = 1 when 2/3 < a < 1 and w2 = 1 when 
lca<2. 

Following the algorithm described in Sections 1 and 2, we shall find the periodic motions of the satellite 
near cylindrical precession, in near-resonant cases. 

First, making the linear change of variables qi, pi -+ q:, p/ (i = 1, 2) we reduce the function H2 at 
e = 0 to normal form. The form of the change when l3 = 0 was indicated before in [7]. When a@ = 2, 
the change of variables is 

q, =q;/&-, qz=q;, PI =p;Jo,-9;, P2 =p;-4;/& (a2 =J3cr-2) (4.2) 

if 2/3 < a c 1; but if 1 < a < 2, the variables q;, q;, pi, pi, w2 in formulae (4.2) must be replaced by 
45, q;, pi, Pi, WI, respectively. 

The resonance terms in the form Hz when e # 0, in the cases w, = s/z, w2 = l/z and wi = 1 (i = I, 2) 
are of orders e3, e and e’, respectively, so that normalization of the form Hz must be carried out up to 
terms of order e3, e and e2 inclusive. 

Normalizing H4 and changing to “polar” coordinates Oi and Ri by the formulae 
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a 

2 

a2 k 1 

0 

e 

Fig. 4 

where k = 3, 1 or 2, we obtain a Hamiltonian similar to Hamiltonian (1.3) of Section 1. 
When p = 0, o1 2: 3/z, this Hamiltonian becomes 

H =W,R, -W2R2 +e3tsR, cos(20, -3v+n)+e3(c2,Rf +cIIR,R2 +cozR~)+O(ex) (4.3) 

G, =i+g(a-$)+O(e4), a; =a, +e2cq2, a,, = 5975’675 = 4 4124 
13541632 ’ ‘.’ 

23475 
-+O(e’), o=- 

25 244& 

2048 
, $0 =co2 =-- 

1764’ Cl1 =- 1323 

The coefficients cii in (4.3) (and below in (4.5)) are calculated using formulae given in [7]. 
Introducing the resonance detuning by the formula Gil = 3/z + e3Xo (where x is the parameter of the 

model system), we obtain the following 4x-periodic motions of the satellite 

e=f-ga,eXsin ( 1 :+w* 3 
+O(e3), W=7c---_a,e%cos 

20 ( 1 
F+V* + O(e3) (4.4) 

where a, = , 6573003,, and (w,, p,) is an equilibrium position of the model system. 
Formulae (4.4) (ignoring the terms O(e3)) defines a motion of the satellite in which the end of the 

unit vector of its axis describes a curve on the unit sphere whose projection onto the plane OX2 of the 
orbital system of coordinates is an ellipse with semi axes - e3’* (the ratio of the lengths of the axes is 
13.12) (Fig. 4a). The satellite axis moves in the same direction as its centre of mass in motion in the 
orbit. 

If p = 0, o2 = l/2, the normalized Hamiltonian has the form (4.3) in which e3 is replaced by e, the 
resonance term by eoR2cos(2B2 + v), and we put 

6, =-+0(e), & w2 - 1 25 
5 =2-13 

3 9 (3=- 2846 
lo4’ c20=%2 =-676’ Cl1 =- ,85g 

(4.5) 

Introducing the resonance detuning by the formula k2 = l/2 - exe, we obtain the following 4n-periodic 
motions of the satellite: 

8=5+5a.&sin z+v* 
( ) 

+0(e), W=n-4a,&cos 
( 1 

;+w. + O(e) (4.6) 
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where a, = ,’ 2p,/3. The motion of the satellite corresponding to formulae (4.6) is similar to the previous 
motion, except that the semiaxes of the ellipse are of the order of ,‘e, the ratio of their lengths is 5/~, 
and the satellite axis moves in the direction opposite to that of its centre of mass in the orbit. 

Regions 0, 1 and 2 in the plane of the parameters (e, a) in the neighbourhood of the points e = 0, 
a = al and e = 0, a = a2, as shown in Fig. 4(b), contain respectively 0, 1 and 2 periodic motions of 
the satellite, of the form (4.4) and (4.6). The boundaries between the regions are curves 

a=a;+ 
2464875 

346112 
e3+O(e4) and a=a,f &+ O@> 

on which the parameter x of the model system takes values f: 1. 
When ap = 2, oi = 1 (i = 1 or 2) the normalized Hamiltonian is 

H=~,R,+~2R2+e2~i~iCoS(20i-2~+egi)+e2(c,~~+~~~~~R2+c~2~~)+O(e3) (4.7) 

where Oc,i = n, Cl02 = 0, and the quantities oi and ck[ are evaluated for an arbitrary point (ao, 2/ao) of 
the curve afi = 2 (a0 f l), with 

oi=glaoc,-11/(3a,-2) 

c20 - 89 cI~ -Y = 1/(2w,), co2 = (3 - 2$)/(8w:), w2 = ,/%&? for K < a0 < I 

c,,=(3-2~0~)/(8~1.#), c,,=1/(20,), co2=x, 0,=,/m for I<a,<2 

The quantity Gi in (4.7) corresponding to a resonance frequency oi is evaluated at a point $a, p) whose 
distance from the point (ao, 2/ao) in the direction of the normal to the curve a@ = 2 is - e and equals 

ai+4 
ihi=l+- a ( -ao>+e 2 3(5ai - lOa, + 4) 

4a 
2( 3a, - 2)(2 - a,) 

+ O(e') 
0 

(4-g) 

The quantity tii for a non-resonance frequency is equal to \‘3ao_2 + 0(e2). 
We introduce the resonance detuning 6; = 1 - e2Xoi. We have the following 2n-periodic motions of 

the satellite 

(4.9) 

for the case when 2/s < a, < 1; in the case when 1 < a0 c 2, we simply replace “sin” in the formula 
for w by “~0s”. 

Relations (4.9) define a motion of the satellite in which its axis oscillates in the OXY plane of the 
orbital system of coordinates (Fig. 5a) about its position in the unperturbed motion, with an angular 
amplitude of the order of e. 

Regions 0, 1 and 2 in the plane of the parameters e, a in the neighbourhood of the points e = 0, 
a = a0 (2/3 c a0 c 1 or 1 < a0 c 2), as shown in Fig. 5(b), have the same meaning as above. If 
2/s < a0 < 1, the equation of the boundary x = 1 is 

a=a,+ 6ao(3 - 2ao) 2 

(a: + 4)t2 - a,) 
e +O(e3) 

and that of the boundary x = -1 is 

a=ao- 
6ao(4az - 7a, + 2) 

(ai + 4)(3a, - 2)(2 -a,) 
e2 + 0(e3) 

If 1 c a0 < 2, the equations of the boundaries x = 1 and x = -1 are interchanged. 
Suppose we are given a point (a, p) in a small (- e2) neighbourhood of the hyperbola af3 = 2. To 

determine the number of periodic solutions of the form (4.9) corresponding to this point, we first use 
the equation of the normal straight line l3 - 2/a. = &a - ao)/2 to determine the nearest point (~(0, 
2/o+) on the hyperbola. Then, using the equality ti2 = 1 - e2Xoi and Eq. (4.8), we find the value of the 
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a (b) 

2-__--_ 

2 

Fig. 5 

e 

parameter x of the model system and draw conclusions about the number and form of the periodic 
solutions. 

In all the resonant cases listed above, the single periodic motion in regions 1 is stable for the majority 
of initial data; of the two periodic motions in regions 2, one (corresponding to the lower amplitude) is 
unstable and one (corresponding to the higher amplitude) is stable for the majority of initial data. 
Condition (2.9) for stable motions is violated only for the resonant case oi = 1 and C@ = 2, if for ‘/j 
< a0 < 5/e the parameter x of the model system takes the value x = x* = 3(2ao - 1)/(5 - 6ao). 
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